Effects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293).
نویسندگان
چکیده
Methylmercury (MeHg) disrupts the function of native, high voltage-activated neuronal Ca(2+) channels in several types of cells. However, the effects of MeHg on isolated Ca(2+) channel phenotypes have not been examined. The aim of the present study was to examine the action of MeHg on recombinant, neuronal L-type voltage-sensitive Ca(2+) channels. Human embryonic kidney cells (HEK-293) were transfected with human neuronal cDNA clones of the alpha(1C-1) subunit in combination with alpha(2b) and beta(3a) Ca(2+) channel subunits and the reporter jellyfish green fluorescent protein for transient expression. Current from expressed channels (I(Ba)) and their response to MeHg applied acutely were measured using whole-cell voltage-clamp recording techniques and Ba(2+) (5 mM) as charge carrier. Amplitude of I(Ba) in these cells was reduced by the dihydropyridine (DHP), nimodipine, and enhanced by Bay K8644 [S-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3 pyridine carboxylic acid methyl ester]. MeHg (0.125-5.0 microM) caused a time- and concentration-dependent reduction in amplitude of the peak and sustained current through these channels. However, even at the highest concentration of MeHg tested, reduction of current amplitude by MeHg was incomplete. Washing with MeHg-free solution could not reverse its effects. The steady-state inactivation curve was unaltered by MeHg. Increasing the stimulation frequency or the extracellular Ba(2+) concentration each attenuated slightly the reduction in amplitude of I(Ba) by MeHg. In the presence of MeHg (5.0 microM), Bay K8644 still increased the remaining current, and nimodipine (10 microM) reduced residual current that was resistant to MeHg. Thus, although MeHg reduces the amplitude of recombinant, heterologously expressed L-type channel current, a portion of current is resistant to reduction by MeHg. Furthermore, DHP agonists and antagonists retain their ability to affect L-type Ca(2+) channel current even in the presence of MeHg.
منابع مشابه
Investigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)
Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...
متن کاملInorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms.
Part of the neurotoxic effects of inorganic mercury (Hg(2+)) and methylmercury (MeHg) was attributed to their interaction with voltage-activated calcium channels. Effects of mercury on T-type calcium channels are controversial. Therefore, we investigated effects of Hg(2+) and MeHg on neuronal Ca(v)3.1 (T-type) calcium channel stably expressed in the human embryonic kidney (HEK) 293 cell line. H...
متن کاملVoltage-dependent facilitation of cardiac L-type Ca channels expressed in HEK-293 cells requires beta-subunit.
The activity of native L-type Ca channels can be facilitated by strong depolarizations. The cardiac Ca channel alpha(1C)-subunit was transiently expressed in human embryonic kidney (HEK-293) cells, but these channels did not exhibit voltage-dependent facilitation. Coexpression of the Ca channel beta(1a)- or beta(2a)-subunit with the alpha(1C)-subunit enabled voltage-dependent facilitation in 40...
متن کاملComparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells.
Expression cDNA clones of alpha1B-1 or alpha1E-3 subunits coding for human neuronal N-(Cav2.2) or R-subtype (Cav2.3) Ca2+ channels, respectively, was combined with alpha2-bdelta and beta3-a Ca2+ channel subunits, and transfected into human embryonic kidney cells for transient expression to determine whether specific types of neuronal voltage-sensitive Ca2+ channels are affected differentially b...
متن کاملEvaluation of Iranian Snake ‘Macrovipera lebetina’ Venom Cytotoxicity in Kidney Cell Line HEK-293
Background:Envenomation by Macrovipera lebetina (M. lebetina) is characterized by prominent local tissue damage, hemorrhage, abnormalities in the blood coagulation system, necrosis, and edema. However, the main cause of death after a bite by M. lebetina has been attributed to acute renal failure (ARF). It is unclear whether the venom components have a direct or indirect action in causing ARF. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 302 2 شماره
صفحات -
تاریخ انتشار 2002